Coordination of product design and production planning in supply networks

The case in customized mass production

József Váncza
Laboratory of Engineering and Management Intelligence

Computer and Automation Research Institute
Hungarian Academy of Sciences

Mass customization

- A paradox
 - Meeting individual customers’ requirements
 - With mass production’s efficiency
 - Without significant increase in production and logistic costs
- Customization
 - Not a matter of choice: a competitive necessity
- Accommodating the complexity of the market
 - Large variability of product lines
 - Extremely hard delivery requirements of customers
- Production
 - With highly flexible technology
 - In networks of autonomous enterprises
 - Most of which participating in several networks
Case 1: Mass production of consumer goods

- Coordinating a national supply network
 - Project: VITAL - Real-Time Cooperative Enterprises

- Products
 - Customized mass products
 - electric bulbs, lighting appliances
 - Large product diversity: ~6,000 kinds
 - Packaging material diversity: ~20,000 kinds

- Market
 - “You want to see something risky, try selling a lightbulb to a big box retailer.” Jeff Immelt, GE CEO
 - High forecast fluctuation: ±30-100%
 - Ship-or-cancel customers

- Production
 - Order lead times << production lead times
 - Make-to-stock is necessary
 - High setup costs
 - Large inventory costs, including obsolete inventories

Case 2: Automotive industry

- AC/DC FP6 project within the “Five-days car” initiative
 - With leading German OEMs and suppliers

- Goals
 - new design, production and logistics environment that cuts down
 - the inventory and the time to produce a specific
 - customized car configuration

- Approach
 - Customize-to-order (CtO)
 - Combining individual built-to order and series production by „late customization“
 - Customer-anonymous chassis and body production
 - (Mostly) software-based customization before finishing
General problem statement

- **Common goal of each network partner**
 - High service level towards its customer
 - At the lowest possible production and logistic costs

- **Issues**
 - Conflicting goals
 - High service level can be guaranteed by inventories only
 - Component, packaging material, end-product
 - Low cost can be achieved only with mass production's efficiency
 - Increasing logistic costs (including obsolete inventories)
 - Product line complexity
 - Spiraling costs (inventory)
 - Paralysis of the production network
 - Sharing costs and benefits between autonomous network partners

- **Our specific interest**
 - Cooperative planning
 - ... and sooner or later, also product design

Cooperative planning: requirements

- Autonomy of network partners respected
- Service level guaranteed
- Channels coordinated
 - Minimal total cost: setup + inventory holding + obsolete inventory
 - As a result of local decisions
- Coordination supported at several levels of aggregation
 - Tactical
 - Operational
- Regular actualization of plans
 - Feedback from execution
- Profits and losses shared
 - Partners should “laugh and cry together”.
- Cooperation as self-interest
Cooperative planning: VITAL

- Detaching the two main criteria
 - **Service level**: exchanging production and delivery schedules
 - **Minimum total cost**: exchanging component demand forecasts and production plans of suppliers
- Coupling the two levels: inventory management

Logistics Platform

LOCAL DECISIONS

- Supplier
- Manufacturer

LOGISTICS FRAMEWORK

- Product information
- Component forecast
- Production schedule
- Inventory status
- Call-off

LOCAL DECISIONS

- Raw material demand
- Raw materials
- FILL
- Delivery schedule
- Prod. plan (acknowledgment)

Logistics Platform

Single PO Channel Scheduling Level

<table>
<thead>
<tr>
<th>Channel</th>
<th>Inventory policy</th>
<th>Forecast</th>
<th>MRP/forecast coverage</th>
<th>On-hand inventory</th>
<th>On-hand supplier</th>
<th>Consignment Supplier</th>
<th>On-hand material</th>
<th>On-hand materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product</td>
<td>Sales Forecast</td>
<td>On-hand</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
</tr>
<tr>
<td>Material</td>
<td>Raw material</td>
<td>On-hand</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
<td>0.900</td>
</tr>
</tbody>
</table>

Cooperated planning: example
Cooperative planning: AC/DC

Objectives
- 100% reliability in service
- Decreasing inventories

Phases
1. Customer-anonymous production at suppliers
2. Just-in-sequence delivery of components to OEMs
3. Final customization during transport or at car-traders place

Continuous dynamic planning loops
- Collaborative demand prediction
 - Exchange of stochastic demand patterns
- Collaborative planning
 - common communication platform to keep information up-to-date for everybody concerned
- Real-time, fail-safe event handling
 - With feedback to demand prediction

Network-wide maximal total benefit, profit sharing

Forecasts
Make/Assemble-to-Stock production remains essential
Transition of forecasts

Forecast accuracy
- On aggregate level, actual usage corresponds well prior forecasts
- Large variability per individual components
 - Both large positive and negative deviations

Planning alone cannot resolve this issue
Component modularization (VITAL)

- In manufacturer-supplier cooperation
- Decreasing the variability of components
 - Reflex response: standardization
 - Standardizing shapes and sizes of boxes and packaging → cutout
 - Limiting the color spectrum
 - Using standard materials
 - Clustering
 - Modular product families and operations
 - Based on usage frequency, risk, resource requirements
- Merits
 - Fewer/cheaper setups at the suppliers
 - More reliable component forecasts
 - Less excess inventories of special materials
- Adverse effects
 - Conflict with customers
 - Against innovative products
 - Easier to copy and replicate
From standardization to differentiation (AC/DC)

- **Configurable product**
 - As alternative to mass customized product
- **Delayed product differentiation**
 - Flexible chassis design and configuration
- **Modularization**
 - Should enable last minute configuration and differentiation
 - Consistent interfaces between
 - Mechanics, electronics and software
 - Massive reduction of the number of components
 - E.g. chassis: 47 → 7
 - Tailoring of mechatronical modules by software
- **Focus set first on a mechatronic module: rear axle**
 - Lessons transferable to other components

Conclusions

- **Mass customization**
 - Primary objectives in sharp conflict
 - Unrealistic (almost irrational) delivery requirements
 - Overcoming the challenge of customer introduced variability
- **Cooperation against uncertainty**
 - Supply planning
 - Information exchange about future intentions, at several levels
 - Telling the truth should be in the interest of the partners
 - Product design
 - Jointly developed modular components
 - Re-configurable, differentiable components
- **However, cooperation can be against**
 - Competition
 - Innovation
- **Instead of accepting, rather shaping market complexity**
Thanks for your attention!