Presentation Outline

• Evolution in Machining for aerospace
 – Structural part dimension
 – Machining of “difficult” materials
 – From machine tool to machining system

• Adaptation and decentralized automation
 – Distributed control
 – Virtual automation networks
 – Metamodeling and language oriented development
Adaptation in Manufacturing Systems

- The overall capacity of a manufacturing systems builder evolves to improve its performance in a high competitive market.
- A manufacturing system family evolve to improve its performance in a manufacturing niche.
- A manufacturing system evolves through various re-configuration steps to adapt to a dynamic manufacturing environment.

Machining of aeromobile structural part

- Structural part dimension increases
- Removed material volume increases
- Machining time should decrease
Machine Structure: JetFive
(Eureka project 2267/E)

• Linear motor 5 axes machining center
• Gantry control on all axes
• Axes strokes motors and thrusts
 • X 14,000mm 2+2 Fanuc L15000/C2
 Max Thrust 60,000N
 • Y 2,000mm 2 Fanuc L15000/C2
 Max Thrust 30,000 N
 • Z 500mm 2 Fanuc L9000/B
 Max Thrust 18,000 N
• Universal tilting head prototype
 • A axis +/- 30 degrees
 • C axis +/- 180 degrees
• Tilting table with integrated vacuum clamping system

JetFive/L

• Linear motor 5 axes machining center
• Gantry control on all axes
• Work Area Dimension:
 • X from 3,000 to 19,000 mm
 • Y 2,000 mm
 • Z 600 mm
• HSK-A80/HSK-A63 Spindle
 • Speed 20,000rpm
 • Power up to 75kW
 • Torque 200Nm
 • Forward bearing 100mm
• HSK-A100 Spindles
 • Speed 6 / 8 / 14,000rpm
 • Power up to 75kW
 • Torque fino a 1000Nm
 • Forward bearing: 130mm
Machining of titanium alloys

- Roughing at low speed and maximum depth
- Special tool development
- High torque electrospindle (beyond 3.000 Nm)
- Machine structure with high dynamic and static stiffness
- 5 Axes, high speed finishing milling, boring and drilling

Adaptation of JetFive Process Unit

- High stiffness, stable structure, balancing on Y axis for heavy heads
- Electrospindle providing 7.640 Nm torque at low speed (up to 500 rpm)
Horizontal head with double electrospindle

Horizontal head cutting parameters

<table>
<thead>
<tr>
<th>ZERSPANUNGSVERSUCH 12) B.A.Z. JET FIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearbeitungszeiten:</td>
</tr>
<tr>
<td>JET FIVE</td>
</tr>
<tr>
<td>FRASER Typ: BCCO</td>
</tr>
<tr>
<td>F4210,1P-8315-15C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>SP 1/2</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vf</th>
<th>RF</th>
<th>Wk</th>
<th>Tc</th>
<th>KW</th>
<th>%</th>
<th>C6</th>
<th>Nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>15</td>
<td>6</td>
<td>0.35</td>
<td>550</td>
<td>5000</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>7</td>
<td>0.25</td>
<td>3000</td>
<td>5000</td>
<td>83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>15</td>
<td>6</td>
<td>0.35</td>
<td>550</td>
<td>5000</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>7</td>
<td>0.25</td>
<td>3000</td>
<td>5000</td>
<td>83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Material removal rate

![Material removal rate chart](image1)

Tilting head for 5 axes machining and automated head changer

Electrospindle providing 94.5 kW power and 1822 Nm torque at 4000 rpm speed for 5 axes machining
Flexible Machining Systems

Flexible Automation: Perceived drawbacks

- Complexity
- Slow and uncertain ROI
- Bad “reputation” between shop floor personnel
- Difficulties in managing (frequent) unattended events:
 - Unplanned machine downtimes
 - Tool breakages
 - Raw/casted part delivery delays
 - Quality control failures
- Difficult application of industrial accounting practices
Flexible Automation: Potential Advantages

- Set-up cost reduction:
 - Increasing flexibility
 - Increasing productivity (in a turbulent production environment)
- Redefinition of the man-machine relationship
 - Rational approach to solve problems arising during manufacturing operations
From sensors to production plan …and beyond

Key Element in FMS: Supervisory control

- Flexible automation coordination
- Real time monitoring of resources status:
 - Units
 - Pallets
 - Fixtures
 - Parts
 - Tools
- Operation description and part-program management
 - Dynamic management of CNC memory
- Execution of a production plan
 - Real time dispatching of part to machines
 - Priorities and balancing of production orders
Adaptation: a better comprehension of modularity

Exploration

Exploitation

Modularity is a **process**

A module is a **reusable** unit

Adaptation

Enabled by technological and methodological advancement

Trend in automation

Trend towards distributed systems

More “intelligence” on lower levels
From hierarchies to agencies

Conventional Hierarchical Control

ERP
MES
SCADA
Control & Field Devices

PABADIS approach

Office level
Factory level
Field level

mobile Agents

ERP

PABADIS-PROMISE approach

Office level
Factory level
Field level

product Agents

resource Agents

Virtual Automation Networks

Remote Industrial Domains / subsidiary / customer sites
Industrial Domain
Industrial Backbone
Industrial Segment
Individual industrial sub domains
Real-time domain

Industrial WLAN domain
Mobile devices
Public and Private Telecommunication Networks/Internet
Single device integration (e.g. telecontrol)

Intrinsic safety domain

resource Agents
Design of modular production system:
Integrated Design Methodology

- Control design
- Functional decomposition
- Bottom-Up Approach
- Top-Down Approach
- Manufacturing Plants
- Machining Centers
- Workarea
- Machines
- Unit
- Module
- Groups
- Sensors & actuators
- Device
- Elementary components
- Components Aggregation
- Mechanical Design

Model Driven Development of Embedded Control

- Model
- Development
- Embedded
- Control
- MEDEIA
- FP VII Strep ICT-2007-2-211448
- (1/2008 - 12/2010)
Meta Modelling and Language Driven Development

- **Abstract syntax (Meta-models)**
 - Domain concepts, element properties and composition rules
- **Semantics (Model Transformation)**
 - Generation of executable artefacts
- **Concrete syntax (Model Editing and Exchanging)**
 - Human usable notation
 - Persistency support
 - Interchangeable format

Key enabling technology for power users

Programming of complex clamping/unclamping sequences

Context: Machining of structural parts for airplanes
Problem: How to program a variety of clamping devices
- Different part types
- Different clamping techniques (Hydraulic, Pneumatic, Mechanical)
- Different sensors and actuators
- Different timing
- Safe Integration with manual activities
PLUS: A DSL for Programming Clamping Sequences

- A clamping/unclamping program is a **sequence** of phases.
- Each **phase** is made by different steps.
- In a step, it is possible to **check** the status of various sensors or to **change** the status of various effectors.
- Different **sensors** and **effectors** are specified for each fixture.
- Sensors and effectors are mapped to **PLC variables**.

Diagram:

- Supervisor
- LAN
- PLC
- Field bus

PLUS: Abstract and Concrete Syntax

```plaintext
sequence op10 desc(Open and close clamp1)
  phase 1 desc(Open clamp)
    actuate off(closeClamp1)
    check on(clamp1Open) off(clamp1Close) 2 5
  end
  phase 2 desc(Close clamp)
    actuate on(closeClamp1)
    check on(clamp1Close) off(clamp1Open) 2 5
  end
end

fixture myFixture
  sensor clamp1Open 0
  sensor clamp1Close 1
effector closeClamp1 100
end
```
PLUS Program Semantics

• A program is any precisely defined model of a solution to some problem in some domain, expressed using domain concepts

• Language semantics is defined by its runtime execution environment

• For PLUS DSL its RTE is made by:
 – A generator of bytecode transforming program instructions in a model executable by a PLC
 – The bytecode interpreter running on the PLC

Network Part Program and Model Driven Process Plan Execution

• Dated DSL ISO 6983
 – needs to improve and to raise abstraction level in modelling machining operations to perform advanced control of the machining process

• Network Part Program method
 – explicitly based on the development of a new DSL, its supporting tool and its run-time environment

• Influenced by the Step-NC project
 – association between machining operation and manufacturing feature creates a machining working step

• High level of abstraction to represent process plans provides support:
 – to control process cycles step by step
 – to manage unexpected events
 – to automatic restart and to execute incomplete cycles

• Actually under investigation inside an Italian national research project (NetPP 1/2007 – 12/2009)
Conclusions

- Product evolution pushes process evolution and requires integration in production systems
- The increasing complexity of flexible production systems, and their extended life-cycle, need proper management to become as transparent as possible
- Adaptive machining systems requires:
 - Better modularity conceived as a process, integrating mechanical and control engineering, to discover reusable automation components
 - More “intelligence” on lower levels
 - Better network infrastructure
 - Formalization and seamless models of production processes and resources
Thank you!

MCM Product: Horizontal axis machining centers

- HSK-A63
 - Rapid feeds 120 m/min.
 - Pallet dimensions 500x500

- A.C. axes 22,000 degrees/min.
- HSK-A80 / HSK-A63
- Linear axes rapid feeds 70 m/min.
- Pallet dimensions 3,000x2,000
Flexible Automation.

Multi-pallet flexible manufacturing cells

Parallel-machine Flexible Machining Systems

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sper tool</td>
<td></td>
</tr>
<tr>
<td>Number of tools HSK-A100</td>
<td>294-999</td>
</tr>
<tr>
<td>Number of tools HSK-A63</td>
<td>343-2258</td>
</tr>
<tr>
<td>Tool regeneration with buffer</td>
<td>12 s</td>
</tr>
<tr>
<td>Number of pallets</td>
<td>14-160</td>
</tr>
<tr>
<td>Pallets automation on 3 different levels</td>
<td></td>
</tr>
</tbody>
</table>
Focused Flexibility Mfg. Plant

- Designed to deal with a specific production problem
- Configured to provide the exact amount of flexibility
- Re-configured to adapt to changing requirements

MCM S.p.A.: Facts & Figures

- Start activities in 1978
- Revenues: 60M€
- Personnel: 220 employees
- MCs per years: 80
- MCs installed since 1978: 1900
- Subsidiaries in France, Germany and USA
Company Strength Points

- Great production flexibility
- High precision and availability
- Extreme product customization
- Acknowledged quality and technological know-how
- Effective and fast maintenance services
- Capability to provide “turn-key” manufacturing plants

MCM Organization
Tilting head prototype

- High stiffness in a compact solution integrating axis A inside the envelope of the C axis.
- Tilting head hosts an electrospindle providing 100HP power and 200Nm torque at 20,000 rpm speed
- Mechanical group of axes A and C are mounted inside a mobile sleigh corresponding to the Z axis
- To reduce overall envelope only the C axis use direct drive (torque motor), while A uses a traditional ball screw drive.

A Axis
- Axis stroke: -30° +30°
- Speed: 6.28 rad/s
- Torque S1: 1356 Nm
- Torque S6: 5086 Nm
- Drive: 2 DC motors and screw-balls
- Axis weight: 340 Kg

C Axis
- Axis stroke: -180° +180°
- Speed: 6.28 rad/s
- Torque S1: 2658 Nm
- Torque S6: 3676 Nm
- Drive: torque motor
- Axis weight: 365 Kg
FMS Management Headaches

It is difficult to make flexibility really available and hence to manage flexible capacity

- to take decision on production task activation
- to set priority levels for production tasks
- to show resource needed by the current production, in order to prepare tools and fixtures
- to know in advance lot termination dates

An *unflexible* production plant does not allow to effectively solve a complex production problem

A *flexible* production plant offers better tools to cope with complex production problems but it makes evident the management complexity level
FMS Management Advantages

Flexible manufacturing plants allow:

- Parallel execution of different part types
- Real time selection of part types based on effective resource availability
- To work during unmanned shifts
- To work efficiently pallet with different part types (or different phases for the same part type)

Such a flexibility is needed to cope with complex production environment, characterized by:

- High variability in volumes and mix
- Resources shared by different operations
- Turbulent productive environment (difficult materials, frequent production changes)

Resource monitoring and process tracking

<table>
<thead>
<tr>
<th>Machine</th>
<th>Tools</th>
<th>Start</th>
<th>End</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>03/12/00 10:12:32</td>
<td>03/12/00 10:12:32</td>
<td>Online</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>03/12/00 10:12:32</td>
<td>03/12/00 10:12:32</td>
<td>Online</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>03/12/00 10:12:32</td>
<td>03/12/00 10:12:32</td>
<td>Online</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>03/12/00 10:12:32</td>
<td>03/12/00 10:12:32</td>
<td>Online</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
<th>Action</th>
<th>Status</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>03/12/00 10:12:32</td>
<td>Start</td>
<td>Online</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>03/12/00 10:12:32</td>
<td>Start</td>
<td>Online</td>
<td></td>
</tr>
</tbody>
</table>
Operative Production Planning

<table>
<thead>
<tr>
<th>Cose da fare</th>
<th>Ospite</th>
<th>HPAU</th>
<th>Cose da fare</th>
<th>Ospite</th>
<th>HPAU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Decentralized Automation

- **Expected benefits**
 - Flexibility
 - Vertical integration
 - Robustness (through redundancy)
 - Set-up and reconfiguration

- **Need more intelligence on lower levels**
Decentralized Automation: consequences

- Technology provider
 - Automatic integration of automation components
 - Configurable automation functions
- Machine supplier
 - Functional models of automation units
 - Parametric interfaces
- System integrator (and/or power users)
 - Control engineering derives from models of production process and of machines
 - Requires formalization and seamless models

Decentralized automation: balance

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Risks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effort shifts to early phases and benefits in plant realization commissioning and reconfiguration</td>
<td>High project-independent investments</td>
</tr>
<tr>
<td>Long term reuse of automation units</td>
<td>Rising internal complexity of single units</td>
</tr>
</tbody>
</table>
Work Cycle Development Problems

- Error detection inside ISO code is difficult
 → Simulation of CNC Program and machine kinematics
- Difficulties in documentation and feedback for correction on ISO code
- Difficulties in overall planning an optimization of ISO code (change in tool sequence)
 → Shop Floor Programming Supporting Tools

CAM (off line programming) → SFP (Shop Floor Programming) (on line programming)

Part Geometry (Import of IGES, DXF, ...)

Process Operation → Tool Selection → Verification (Simulation Software) → Post-processor
Sequence Definition

NetPP: Dynamic Execution of non-linear Process Plans

- Disadvantages of traditional part programs
 - Difficulties in programs modification and errors correction;
 - Difficulties in optimisation of operations sequence;
 - Difficulties in process cycle optimisation during execution;
 - Difficulties in exploiting the potentialities of a flexible production system;

- Network Part Program (Net.P.P.)
 - Easy writing and correction of work cycles;
 - Optimisation of operations sequence;
 - Cycle optimisation during execution;
 - Better exploitation of potentialities of a flexible production system;
Network Part Program: New Machining Concept

• Programming
 – Explicit Machining Model
 – Reuse of tool path
 – Increasing productivity and reducing errors
 – Explicit multi-clamping fixture configuration
 – Explicit multi-face pallet configuration

• Execution
 – Optimized execution of multiple operations on complex multi-clamping fixtures
 – Machine time saving, executing only loaded components
 – Safe continuation after failure
 – Tool sharing optimization